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ABSTRACT

Statistically steady states of a two-layer quasi-geostrophic model truncated to retain only the zonal mean flow
and one nonzero zonal wavenumber, but with high meridional resolution, are described. The model is forced
by imposing a time-mean unstable meridional temperature gradient, assuming that deviations from the time~
mean are doubly periodic. A comparison is made with a more conventional channel model with the same zonal
truncation, in which the flow is forced by radiative relaxation to an unstable temperature gradient. It is shown
that the statistics of the channel model approach those of the doubly periodic model as the width of the unstable
region in the former is increased. Implications for parameterization theories are discussed.

1. Introduction.

Tt is difficult to test theories for baroclinic eddy fluxes
against atmospheric observations. This is partly because
complicating factors such as latent heat release and
nonuniform lower boundary conditions are always
present in the atmosphere but usually ignored in the
theory, and partly because the atmosphere only allows
one to test a theory over a limited parameter range.
An attractive alternative is to test hypotheses against
idealized dynamical models which are sufficiently sim-
ple that it is feasible to obtain a series of statistically
steady states by numerical integration.

We study here what we believe to be the simplest
model of a turbulent flow generated by baroclinic in-
stability. It is a two-layer quasi-geostrophic model,
“one-dimensional” in the sense that it is truncated to
retain only the zonally averaged flow and one nonzero
zonal wavenumber, but with high meridional resolu-
tion to allow for an enstrophy cascade. A time-mean
flow consisting of an unstable uniform vertical shear
is imposed, and the deviations from this time-mean
flow are assumed to satisfy periodic boundary condi-
tions in the meridional as well as zonal directions.
Haidvogel and Held (1980, referred to hereafter as HH)
used a similar two-layer doubly periodic model but
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with isotropic truncation in the horizontal. The present
model is a further simplification of the model in HH
which allows parametric investigations of statistically
steady states that would be very costly using a model
with isotropic truncation.

One cannot expect such a wave-mean flow inter-
action model to give a realistic representation of all
phenomena occurring in two-dimensional turbulence.
For example, small coherent vortices of the sort found
by McWilliams (1984) cannot be produced. On the
other hand, models with severe zonal truncation and
high meridional resolution have proven useful in a
number of meteorological contexts (Matsuno 1971;
Geisler and Dickinson 1974; Holton 1971; Held and
Suarez 1980). Haynes and MclIntyre (1986) discuss
the limitations as well as the successes of such models
in studying the nonlinear evolution of critical layers.
Furthermore, it is not obvious that the best route from
this simplest of models to realistic atmospheric models
passes through the isotropically truncated two-layer
model; an alternative route is to proceed from the zon-
ally truncated two-layer model to a zonally truncated
model with realistic vertical structure, and then to an
isotropically truncated model with realistic vertical
structure.

In HH it is argued that the doubly periodic model
can be thought of as a model of the interior of a channel
flow forced in the more usual way by radiative relax-
ation to an unstable temperature gradient, in the limit
that the width of the unstable region L is very much
larger than a radius of deformation A. This limit, in
which it is argued that the eddy statistics become in-
dependent of L, can only exist if modes that span the
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unstable region are dynamically insignificant. If on the

" contrary the meridional scale of the dominant modes
increases along with L, then one expects the time-av-
eraged eddy energy to increase also, since larger eddies
would be needed to produce the same eddy flux con-
vergences and mean flow modification. Since the me-
ridional scale of the most unstable linear mode gen-
erally does increase with increasing L, these most un-
stable modes must break up through secondary
instabilities (e.g., Pedlosky 1975) into disturbances
whose meridional structure scales with A, if the statistics
are to become independent of L.

The doubly periodic model addresses this issue in
its most extreme form, for in such a model the most
unstable wave has no meridional structure and does
not modify the zonal mean flow at all. An initial con-
dition with only this mode present results in continuous
exponential growth. However, for general initial con-
ditions HH find that the system does equilibrate and
that the eddy statistics seem to be independent of the
size of the doubly periodic domain. In HH it is argued
that this independence is indirect evidence that the
doubly periodic model does indeed approximate the
flow in the interior of sufficiently wide channels.

The outline of this paper is as follows. The doubly
periodic model truncated to one nonzero zonal wave-
number is described in section 2. Section 3 describes
the statistically steady states of the model. We are able
to show much more convincingly than in HH that the
statistically steady states of such a model are indepen-
dent of the size of the doubly periodic domain. The
results also demonstrate that in spite of the severe spec-
tral truncation, the spectral structure of the steady state
is consistent with one’s expectations for forced and
damped quasi-geostrophic turbulence. The dependence
of the domain-averaged heat (or buoyancy) flux on the
various physical and computational parameters of the
model is examined. Section 4 contains the central result
of the paper. A channel model with the same zonal
truncation is forced by radiative relaxation to a tem-
perature gradient that is unstable in a central latitude
belt. It is shown that the statistical behavior in the un-
stable belt converges to that of the doubly periodic
model, as the width of the belt increases. In showing
this, we focus on the zonally averaged potential vor-
ticity flux, as knowledge of this quantity is all that is
needed for closure in quasi-geostrophic models with
linear nonconservative terms. The discussion in section
5 summarizes our main findings, and touches on the
generation of long-lasting multiple-jet structures in both
the channel and doubly periodic models.

2. The doubly periodic model

The fluid layers are of equal resting depth H, and

are bounded above and below by rigid horizontal sur-
faces. The meridional coordinate y measures distance
from the center of the domain, where the Coriolis pa-
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rameter is fo. Subscripts 1 and 2 index properties of
the upper and lower layers, respectively. In terms of
the layer densities p;, the Rossby radius A is defined by

= glp, — p1)H/(2p2f0°). We include a thermal
damping, lower Ekman friction, and a scale-selective
biharmonic diffusion of vorticity to absorb the enstro-
phy cascade. In terms of the total streamfunctions ¥;,
the dimensional equations for quasi-geostrophic mo-
tion on a $-plane are

aQ, /ot + J(¥y, Q)
= kr(¥; — ¥3)/(2\?) — wWWo¥, + R,,
8@,/ 0t + J(\I'z, Q2) = —kp(¥; — ¥3)/(2\%)
— V2, — 2V, + R,,
where the potential vorticity Q; is
Q) =By + VY, + (j‘l)j(‘l’n — ¥,)/(2)?),

and R, is a time-independent forcing function.

The eddy streamfunctions y; are now defined as de-
partures from a state with a spatially uniform vertical
shear of the zonal wind, with no meridional wind, and
with the lower layer taken (for simplicity) at rest:

\I,l(x’ s t) = _U0y+ ‘l/l(xs Y, t);
‘I’z(x, Y, t)='p2(x’ Y, t) (2)

We assume U > 0, and non-dimensionalize (x, p, ¢
¥;) with (A, A, A/ Up, U(,)\), so that the dlmenswnless
parameters are 8* = A2/ Uo, (k¥ k¥) = (kars KT)N
Us, and »v* = »/(Us\?). Our motivation for non-di-
mensionalizing meridional as well as zonal distance by
A has been discussed in the introduction. In what fol-
lows, we omit the asterisks and assume all quantities
are nondimensional unless otherwise stated. The tran-
sient eddy equations become

dq /ot + J(¥;, q)) 3)

In (3), defining ¥ = (¥; — ¥)/2, the transient po-
tential vorticities are given by

= Vz\l/j + (_l)j‘pa

the terms descnblng the interaction with the ume—-
mean flow by

Fy=—08q,/0x — (B + 1/2)81/dx,

F, = —(8—1/2)8y2/0x,
and the nonconservative terms by

Dy = kr§ — ¥V,
Dy = =7y = kyVi, — 1V,

Aside from the inclusion of the radiative damping term,
these are just the equations used in HH. We include
radiative damping here for cleaner comparison with
the channel model, where radiative damping is an es-
sential aspect of the forcing.

(1

=F_,~+Dj.

0
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The y; are now assumed to consist of a zonally av-
eraged part plus one nonzero zonal wavenumber:

%’(x, Vs t) = ‘//j,O(y’ t) + (‘Pj,k(ys t)eikx + C'C')- (4)

The first term on the right-hand side is referred to as
the “zonal mean component” of the flow and the sec-
ond term as the “wave component”. Ignoring wave-
wave interactions, the resulting equations of motion
are -

9q;0/8t = =2 Red(vxq¥c)/0y + F;o + Djp

94y, ;/ 9t = ik(qr,;j0¥;0/9y — ¥jx0q;0/9y)

) + Fix + Djs,
where the decomposition of ¢, F and D terms is as in
(4) and an asterisk denotes complex conjugation.

We now assume solutions to be of period 2#L in y,
having the spectral decomposition

Yim = b Vimn(t )ei!,,y’

n=—N+1,N

&)

where [, = n/L, mis either 0 or k, and ;0 = 0. Since
Y0 is real, ¥ 0, = Y o, for |n| < N. With a given
choice of L, the spectral resolution is 1/L and the
maximum wavenumber retained is N/L; unless oth-
erwise indicated, the experiments described here are
conducted with N = 256. The resulting system of or-
dinary differential equations for the coefficients
Vion(t) and ¥, »(2) is integrated with a combination
of an explicit leapfrog scheme for the non-dissipative
terms and a centered implicit scheme for the dissipative
ones. To suppresss the computational mode, one of
the two time levels of the leapfrog is discarded every
50 steps, and the integration restarted with a second-
order accurate forward step. The Jacobians are com-
puted using the alias-free transform method (Orszag
1971) in thé meridional direction. Time integrations
extend 1600 nondimensional time units, typically
coming to statistical equilibrium in the first 200-400
time units, and time averages of statistics were taken
over the period 600-1600. No exhaustive attempt was
made to demonstrate the independence of the statis-
tically steady states from the initial conditions, although

no suggestions of nonuniqueness were found either. As -

indicated in section 4, very long time scales can be
present in the integrations.

The steady-state energy and potential enstrophy
budgets are derived by multiplying Eqgs. (2.3)-(2.6)
by streamfunction and potential vorticity and averaging
in space and time as usual. Using angle brackets to
denote horizontal averages, the vertically averaged total
energy budget can be written

—{01g:)/2 = k7 {P?) + k| V2| 2)/2 |
+ v V(YY) |2 + [V(VH2) | 2)/2,

where v, = ¥,. The term on the left-hand side is the
energy generation term, and the terms on the right-
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hand side are the contributions to total dissipation
made by (in order of appearance) thermal, Ekman,
and diffusive damping.

The balances for potential enstrophy by layer, are

=g B+ 1/2) = =k (@) + (@ V)
—(0202)(8 — 1/2) = —xr(Va2)
+ kel @V ) + (@ V).

Once again the generation term is on the left, the dis-
sipative terms on the right.

All the generation terms are proportional to the po-
tential vorticity flux in the upper layer; repeated inte-
grations by parts show that

—{vig) = (@) = =W + 12)/2), (6)

the last term being proportional to the total meridional
heat (or buoyancy) flux.

Spectra are calculated in the following manner. If
the Fourier coefficients of f(x, y) are F,,, (see Eq. 5),
and those of g(x, y) are G,,,, we define the spectrum
{z,} of the zonal component of {fg) by

zy=2¢, RC(Fo.nG&n), n=1+++N
and the spectrum {w, } of the wave component by
W, = 2(,‘,, Re(Fk,nGz,n + Fk,—nGz‘,—n), MY N

where ¢, is Y2, if n = 0 or n = N, and is 1, otherwise.

n=0,

3. Statistically steady states of the doubly periodic
model .

In our units, the criterion for inviscid instability is

B8 < 0.5, and the most unstable wavenumber is close

to 0.7. All calculations in this paper will be with the
fixed value for the wave component of k = 0.7. Before
demonstrating the effects of varying other parameters,
we discuss in some detail the equilibrated state for the
particular choice of parameters 8 = 0.15, xy; = 0.3, &7
= 0.067, and » = 0.001. These values (the “comparison
values™) will be used in the next section for our closest
examination of the asymptotic behavior of the channel
model.

Figure 1 shows the linear growth rates as a function
of meridional wavenumber / for this choice of 8 and
k with (i) kar = 0, k7 = 0; (i1) 3 = 0.3, k7 = 0; and
(iii) kps = 0.3, k7 = 0.067. The strong Ekman damping
reduces the growth rates at / = 0 by nearly 40% and
destabilizes. short waves. The addition of thermal
damping further reduces the strength of the instability
by a modest amount. The growth rates are not affected
significantly by the diffusion.

Figure 2 shows the meridional energy spectra for the
wave and zonal mean components of the flow. Each
figure shows results with three different values for the
width of domain or, equivalently, the spectral resolu-
tion: L = 20, 40 and 80. (For the case L = 80, we
increase the number of waves in the system to 512 so
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F1G. 1. Linear growth rates for doubly periodic model as a function
of scaled meridional wavenumber: inviscid rates (solid ); rates for «,,
= 0.3 and 7 = 0.0 (dashed); and rates for «), = 0.3 and xr = 0.067
(dotted).

'

as to maintain resolution of the enstrophy dissipation.)
Figure 3 shows the corresponding energy generation
and nonlinear energy transfer spectra for the wave; the
sum of these two terms is balanced by thermal and
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mechanical dissipation. A small amount of energy is
transferred from the unstable waves to small meridional
scales in the wave field, but the bulk of the nonlinear
transfer is into the zonal mean flow. The spectrum of
the nonlinear source of energy in the zonal mean flow

(not shown) is very similar to the energy spectrum in

Fig. 2.

If scales comparable to the width of the domain
dominated the flow, there would be a spectral peak
near / = 0 in the wave, and this peak would get narrower
and higher as L and the spectral resolution increased.
This would be in direct contradiction to our assump-
tion on meridional scaling, but it clearly does not occur.
The spectra have settled down even near / = 0. These
results provide ample evidence that the statistics of the
flow are insensitive to the width when this width is
sufficiently large. Poor resolution in wavenumber space
begins to make itself felt at L =~ 10. At this value, we
find modest but significant differences from the results
in the figure. For example, with L = 10 the wave energy
at/=0is0.9.

Holding the width of the domain fixed at L = 20,
Fig. 4 shows how the domain-averaged eddy potential
vorticity flux changes as the model parameters are var-
ied about the comparison values. (The result for the
comparison values is circled in each figure.) As noted

MERIDIONAL WAVENUMBER

FIG. 2. Energy spectra for zonal mean and wave, for calculations with L = 20 (solid),
40 (dotted ), and 80 (dashed ). Parameters set at comparison values and averages taken
over 1000 nondimensional time units after equilibration.
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F1G. 3. Generation and transfer spectra for the wave component;
curves and parameter values as in Fig. 2.

in (6), for this homogeneous system we may confine
our attention to the upper layer flux.

Figure 4a shows how the flux varies as the bihar-
monic diffusion coefficient » is varied. There exists a
large range within which the flux is insensitive to the
value of ». Using the rms velocity U, of order unity in
our calculations, an effective Reynold’s number for
the smallest scale in the model can be defined by U/
(vkmax)? (Bennett and Haidvogel 1983). It is not until
this number rises to values near 50 that the potential
vorticity flux begins to decrease. ( This distortion of the
flux when the flow is not resolved is larger for smaller
thermal damping.) For values of »'/3 larger than 0.1,
the flux begins to decrease again as the energy con-
taining eddies begin to feel the diffusion.

Figure 4b shows that the flux ihcreases monotoni-
cally as the strength of the thermal damping is de-
creased. The thermal damping has a significant effect
on the flux even when it is much weaker than the Ek-
man friction and is too small to have a significant effect
on linear growth rates (Fig. 1). The importance of small
thermal damping is brought out by examining the
fraction of dissipation. due to each form of damping

(Fig. 5). At our comparison value kr = Y5, thermal
damping accounts for 40% of the dissipation of energy
and lower layer potential enstrophy, and 75% of the
upper layer potential enstrophy dissipation. Bihar-
monic diffusion is significant only in the upper layer,
where it is the only other nonconservative effect. The
energy and lower layer. potential enstrophy budgets
continue to be dominated by Ekman and thermal
damping until x> becomes extremely small; even in the
upper layer, x; must be less than s, for diffusion to
be competitive.

Biharmonic diffusion is a parametnzatlon based only
loosely on physical reasoning, so the relatively minor
role it plays in these budgets is reassuring. But while
diffusion accounts for a small fraction of the upper
layer potential enstrophy dissipation for our compar-
ison values, an enstrophy cascade still exists. Figure 6
shows the potential enstrophy spectrum in the upper
layer for » = 1 X 10~2 and » = 0. Although the thermal
damping prevents an inertial range from forming when
v = 1 X 1073, the flat enstrophy spectrum forvr=20is
clear evidence of a cascade.

Returning to Fig. 4, we see in Fig. 4c that the po-
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with a second curve showing results with 8 held at 0.25. In each figure, the circled dot denotes the comparison
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FIG. 6. Upper-layer potential enstrophy spectrum in doubly periodic model, with and without
biharmonic diffusion (other parameters at their comparison values).

tential vorticity flux increases monotonically with de-
creasing B3, as anticipated. More surprisingly, the de-
pendence on ks is not monotonic (3d), reaching a
maximum value at x,, ~ 0.2. For smaller values of
K, the flux appears to be roughly proportional to k.
We also show calculations with 8 = 0.25 which suggest
that the value. of «,, at which the flux maximizes de-
creases with increasing 8. The dynamics of this flow at
small «,, is very different from that in weakly nonlinear
models in which the flux is also proportional to the
strength of the damping; we suspect that the large
amount of energy accumulating in the zonal mean
component of the flow at small x,, distorts the baro-
clinic eddies and reduces their transport (cf. Salmon
1980).

4. The channel model

The (noﬁdimensional).equations for the channel
model are given by

80, /4t + J(¥,, Q1)

. = kr[ (¥, — ¥3)/2 — 7.} — vWWO¥,
80,/ at + J(¥,, Q)

= —k7[(¥) — ¥2)/2 — 7.] — k4VPE, — ¥VOF,. (6)

No decomposition is made into the time-mean flow
and transients. The system is now forced explicitly by
linear relaxation to an unstable “radiative equilibrium
temperature profile” or interface slope 7.(»). The ver-
tical shear in the absence of eddy potential vorticity
fluxes is U, = —d7./dy. The form we choose for U, is

i\ (Uo, Iyl <W
Ue == 2 (7)
2 | Upexp(—[(y — W)/e1®), |yl >W.

The radiative equilibrium winds are flat in a central

region of width 2 and then decay to zero exponen-
tially outside of this region (see Fig. 8a). The width W
will be varied in the following, but we fix ¢ = 4. Since
we think of the doubly periodic model as simulating
the flow in the interior of such a channel, we set U,
= 1, consistent with the nondimensionalization of the
doubly periodic model in section 2. The width of the
channel is taken to be 100 radii of deformation, which
will always be large enough that we can think of U, as
being zero at the walls. ,

The streamfunction ¥; is once again decomposed
into the zonal mean flow plus one nonzero zonal
wavenumber, and wave-wave interactions are ignored.
The streamfunction for the wave must vanish at the
channel boundaries: ¥;;, = 0 at y = +=L/2. For the
biharmonic diffusion, we choose the boundary con-
ditions 8¢/dy = 83¢/8%y = 0 for both wave and zonal
mearn. Since the eddy activity is confined to the center
of the channel in all of the calculations described here,
the choice of this boundary condition should have no
significant effects on the eddy statistics. At the bound-
aries, the zonal mean flow must also satisfy

oU,/at = 0; 0U,/at = —«U,,

where U; = —3¥,4/dy. We always start with the initial
conditions U; = 0, so we can take U; = 0 as the bound-
ary condition also. We use standard centered-differ-
encing for relating the vorticity and streamfunction and
in evaluating the diffusion. The resulting equations
conserve analogs of both energy and enstrophy when
the nonconservative terms are omitted. The number
of meridional grid points is 1000.

Before considering the structure of the equilibrated
flow, we present in Fig. 7a an example of the spinup
of the channel model when the width of the unstable
region is much larger than the radius of deformation
[W = 40 in Eq. (7); other parameters are given their
comparison values]. Plotted in the figure is the squared
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FiG. 7. Zonally averaged upper-layer streamfunction amplitude (squared) as a function of
nondimensional time and meridional distance. Panel (a) shows spinup in the channel model with
, W = 40; (b) shows 400 time-unit sample from doubly periodic model.

upper-layer streamfunction amplitude, zonally aver-
aged, as a function of y and ¢. The initial condition
has a small barotropic eddy streamfunction [ oc sin(wy/
L)], where L is the width of the channel, on a zonally
averaged flow in radiative equilibrium. The initial
emergence of the gravest cross-stream mode is clear.
Equally clear is the rapid transition to structures with
smaller meridional scales. The flow evolves into a mul-
tiple storm track structure. The evolution within each
storm track is chaotic, and the interactions between
distinct storm tracks weak. Each storm track is asso-
ciated with a zonal wind maximum in both the upper
and lower layers. Once formed, there is surprisingly
little tendency for an existing jet and its associated
stormtrack to move to a different latitude. Instead, they

seem to decay in place and then are regenerated at a
different location. The meridional structure generated
by the initial instability of the gravest mode is not an
accurate predictor of the number of jets, or storm
tracks, in the equilibrated flow. Also, the amplitude
attained by the gravest mode in its initial growth, during
which time it can draw on the available potential energy
in the entire unstable region, is typically far in excess
of the statistically steady eddy amplitudes.

We are arguing that the doubly periodic model
should reproduce the statistical behaviour of the chan-
‘nel’s interior region at equilibrium. Figure 7b is a 400
time unit sample (after equilibration) of the time evo-
lution of the squared upper-layer eddy streamfunction
amplitude in the doubly periodic model, and can be
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directly compared to the channel model result in 7a.
The parameters are set at their comparison values. The
qualitative similarity of the two flows is evident; notice
especially that the figures use the same meridional
scales.

Figure 8 shows the time- and zonally averaged winds,
potential vorticity gradients, and potential vorticity
fluxes for channel half-widths W equal to 5, 10, 20 and
40, with all parameters at their comparison values. The
time-averaging period in each case is the final 1000 of
a 1600 time unit integration. The multiple jet structures
that form when W is large are difficult to eliminate by
time-averaging. Given the long time scales evident in
Fig. 7, we cannot be sure how much of this structure
would disappear if the length of the averaging period
were increased. The amount of asymmetry about the
center of the channel can presumably be taken as a
measure of the sampling error.

The contrast in the structure of the upper and lower’
potential vorticity fluxes is striking. The upper layer
flux shows little or no meridional structure on the scale
of the jets. Zonal averages taken using the doubly pe-
riodic model show the same multiple jet structures and
the same qualitative difference between the potential
vorticity fluxes in the two layers. The relation between
the structure of the fluxes and that of the jets is deter-
mined by the relative strengths of the mechanical and
thermal damping. Consider the zonally averaged po-
tential vorticity equations, once differentiated in the

“meridional direction:

8%/8y*(T1g1) = —xrU(y) + v8%/8y°U,
8%/0y* (o) = KTO(y) + k30%/8y*U, + v°/3y°U,,
®)

where U(y)is the zonally and time averaged eddy shear
in the zonal wind (defined according to Eq. (1) or (6)).
Assume that the biharmonic diffusion makes an insig-
nificant contribution to this mean-flow budget. Sup-
pose further that U, U,, and 7;¢; each consist of a part
that varies slowly, on the scale of the forcing, and a
part (U, U,’, T;q7) varying more rapidly like sin(/y),

where /™' is the meridional scale of the jets. The jets
are observed to be equlvalent barotroplc so we make
the approx1mat10n U’ ~ alUy,’, and approximate (8)
by

a1~ 7% U7 ~ a7k Uy’

0243 ~ —I7k7 U0’ + kU’ = (kpr = ol k) Uy (9)
For the calculations in Fig. 8, a/ %7 < ka < 1, hence
the lower layer flux has the structure of the jets, and
~ the upper layer flux is essentially flat (v;g] ~ 0). We
have no theory for how « might depend on external
parameters, but Eq. (9) suggests that as x; increases,
the upper layer flux will begin to show jetlike structure.
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Calculations using larger values of thermal damping
show this to be the case.

The time-mean potential vortlclty gradients for the
channel model in Fig. 8 make it plain that for W > 10
(at this parameter setting), the eddies are incapable of
significantly reducing the negative gradient in the lower
layer. This behavior is in sharp contrast to that assumed
in the simplest “baroclinic adjustment” hypothesis
(Stone 1972) in which the potential vorticity fluxes are
assumed to be those needed to restore the gradient in
the lower layer to zero. This hypothesis requires the
flux to increase with the square of the width of the
unstable region, which is totally at variance with the
behavior of the channel model, even for a half-width
W of 5 Rossby radii.

The zonally averaged zonal winds, potential vorticity
fluxes, and potential vorticity gradients for the doubly
periodic model (not shown here) would be just as hard
to distinguish from corresponding channel interior sta-
tistics in Fig. 8, when W = 40, as was the case for
streamfunction amplitude in Fig. 7.

Figure 9 shows the approach of the upper layer po-
tential vorticity flux to a limiting value in the channel
model as the half-width W increases. To decrease the
sampling error, advantage has been taken of the mod-
el’s symmetry about y = 0 by averaging flux values at
+y and —y. The solid horizontal line, labeled “ho-
mogeneous limit,” is the prediction of the periodic
model with the same parameters. Granted some un-
certainty in the time averages, the fluxes in the central
region are seen to be asymptotic to a value very close
to the periodic model’s prediction.

The fact that the solutions for W = 20 and W = 40
in Fig. 9 are.closer to each other in the center of the
channel than either is to the homogeneous limit-should
not be taken as evidence of a significant bias in the
doubly periodic model. In Fig. 10 we compare the pre-
diction of the doubly periodic model with the merid-
ional behavior of the time-averaged flux in the channel
model for different values of 8. The other parameters
are given their comparison values, with W = 20. There
is no consistent tendency for the doubly periodic model
to over- or under-predict the channel model’s flux. The
dependence of the flux on 8 is clearly similar in the
two models. The sampling errors in the fluxes are ev-
idently 15% or so. An attempt to clearly define the
difference between the flux behavior in the two models
would require much longer integrations of the channel
model than were used for this study.

5. Discussion and conclusions

Forcing a quasi-geostrophic model in a channel by
radiative relaxation to an unstable temperature gra-
dient, we have demonstrated that the eddy statistics
asymptote to limiting values as the width of the uni-
formly unstable region is increased. Furthermore, the
limiting behavior is the same as that produced in a
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F1G. 8. Channel model: meridional structure of time averaged (a) zonal winds, (b) potential vorticity gradients, and (c¢) potential vorticity fluxes,
for values of W = §, 10, 20, 40. Except in (c), upper (lower) curves are upper (lower) layer values, and radiative relaxation profiles are indicated by
dashed curves. Half-widths are indicated in (a).

doubly periodic model in which the spatially averaged
time mean flow is fixed and the transients are assumed
to be periodic in latitude as well as longitude. While
we have used a two-layer model truncated to one non-
zero zonal wavenumber (plus the zonal flow) to make
this point, we see no compelling reason to suspect that
this limit does not also exist in models that are un-
truncated in the vertical and zonal dimensions.
In his study of a similar doubly periodic model,
- Salmon (1980) forces the time mean flow [ Uj in our
Eq. (2)] to vary so as to maintain the domain-averaged

eddy energy generation at a specified value; in effect
he fixes the potential vorticity flux and solves for the
shear. We have demonstrated that this kind of modi-
fication of the governing equations is not necessary.
Aside from this we see our work as being complemen-
tary to his. Having demonstrated the physical signifi-
cance of the doubly periodic model, one is now justified
in pursuing detailed closure schemes (such as Salmon
1980) for homogeneous turbulence that would help
explain behavior in the model.

The very existence of a limiting value for eddy po-



3364

tential vorticity fluxes means that any adjustment the-
ory which requires eddies to neutralize the flow by de-
stroying the reversed potential vorticity gradients in
the lower layer (or reducing them by a certain amount)
must become invalid for a sufficiently wide unstable
region; otherwise the fluxes would have to increase
without bound. As predicted by the doubly periodic
model, both here and in Salmon (1980), the time av-
eraged flow remains strongly supercritical. Only when
the radiative relaxation is sufficiently weak, or the un-
stable region is sufficiently narrow, do we find signifi-
cant neutralization by the eddies, as in Fig. 8 for W
. =35,

One can test whether neutralization is to be expected
by the following check: assume that the limiting value
of the potential vorticity flux for a wide unstable region
is relevant at each latitude, using the local value of the
radiative equilibrium shear; compute the mean flow
modification due to the resulting latitude-dependent
potential vorticity flux (this modification will be in-
versely proportional to the strength of the radiative
relaxation of the mean flow, «7); if this is negligible,
the limiting case is self-consistent and neutralization
should not occur. If significant mean flow modification
is expected, one can attempt to estimate it by this local
theory even if it is not strictly justified. Preliminary
attempts along these lines suggest that such a calcula-
tion can be qualitatively useful. Just as many asymp-
totic expansions can be useful even when the expansion
parameter is of order unity, we suspect that the rele-
vance of the wide-channel limit of the potential vor-
ticity flux is not limited to very wide channels.

The multiple jets and storm tracks that form in wide
unstable regions complicate this picture by introducing
very long time scales and the possibility of inhomo-
geneity even in wide channels. On the one hand, if the
statistically steady state of the doubly periodic model
is unique (as we believe), the homogeneity of the forc-
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FIG. 9. The approach of time-averaged —v,q; () in channel model

to the value predicted by the doubly periodic model (the homogeneous
limit) as the unstable region is widened (W = 5, 10, 20, 40).
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F1G. 10. For fixed W = 20, comparison of —0,q1( ¥) in channel
model with the corresponding homogeneous limit, for 8 = 0.10 (solid
curves), 0.15 (dashed), 0.20 (dotted), and 0.25 (dash-dotted).

ing implies that any quantity averaged over a suffi-
ciently long period will also be spatially homogeneous.
On the other hand, the extent to which the multiple
jets average out in the channel model is uncertain.
Whether or not they do migrate sufficiently so as to
produce homogeneous statistics in the interior, we do
not think that there would be large changes in the eddy
fluxes averaged over scales larger than that of the jets;
that is, we anticipate that the upper-layer potential
vorticity flux would not change appreciably, while the
meridional structure of lower layer flux would come
to resemble the upper layer flux more closely. Notice
that only on such a long time scale would any simple
“ K-theory” correctly predict the relation between the
flux and gradient of potential vorticity in the upper
layer.

One expects some modification of the jets when the
severe zonal truncation is relaxed, since a jet of a given
scale can be stable to the retained wavenumber & but
unstable to longer waves. But as long as 8 is nonzero,
we expect (following Rhines 1975) some long-lived
jets to be a part of the statistics of wide unstable regions.
Such regions occur, for example, in recirculation re-
gions of oceanic subtropical gyres; Yoshida (1970) re-
ported zonal jets in data taken from the North Pacific,
and Cox (1987) found similar behavior in his oceanic
GCM. Calculations with an isotropically truncated
doubly periodic model (which will be reported else-
where) show that the jets are not a feature special to
the zonally truncated model.
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